

Microstrip Low-Pass Filter Based Picosecond Pulse Expansion for PPM Demodulation

Janis Semenjako¹, <u>Tatjana Solovjova¹</u>, Janis Eidaks¹, Sandis Spolitis², Arturs Aboltins¹

¹Institute of Microwave Engineering and Electronics, Riga Technical University, Latvia ²Institute of Telecommunications, Riga Technical University, Latvia

SMWD 2023, Stockholm

– possible phrase in Latin

- Pulse position modulation (PPM) is an energy efficient ultrawideband (UWB) signaling technique.
- ➢ PPM pulses must be as short as possible for significant energy savings. We use 50 ps pulses (0 − 20 GHz).
- > PPM signals can be detected and demodulated by event timers.
- Any timer is characterized by the minimal pulse duration at which it is triggered.

It is challenging to register pulses with duration below 100 ps! Front-end solution should be designed and implemented!

- Delse position modulation (PPM)
- PPM detection by event timer
- Frontend
 - − □ LPF selection
 - Commercial LPFs
 - LPF design and implementation
 - Experimental validation
- Conclusions

Pulse position modulation (PPM)

Structure of example PPM signal encoding **00** and **01**, where:

- Δ duration of one position
- M number of positions

- Pulse position modulation (PPM)
- PPM detection by event timer
- Frontend
 - − □ LPF selection
 - Commercial LPFs
 - LPF design and implementation
 - Experimental validation
- Conclusions

PPM detection by event timer – limits

pulse duration 700ps

- Event timer, Eventech A033-ET, can detect events with a root mean square (RMS) accuracy of about 3 ps, but the pulse must be above the timer's pulse detection threshold for at least 700 ps.
- Therefore, in most cases, it is necessary to perform pulse shaping, expansion, and automatic gain control before detection by the event timer.

PPM detection by event timer – the task

- Pulse generation AWG Keysight M8195
- Pulse time function measurements digital storage oscilloscope (DSO), Keysight DSAZ334A, 80 GSa/s, 33 GHz)

PPM detection by event timer – principle of solution

Compression of the signal in frequency domain results in an expansion in time domain, and vice versa.

[Image from book The Scientist and Engineer's Guide to Digital Signal Processing by Steven W. Smith, Ph.D.]

- Pulse position modulation (PPM)
- PPM detection by event timer
- Frontend
 - − □ LPF selection
 - Commercial LPFs
 - LPF design and implementation
 - Experimental validation
- Conclusions

LPF selection – typical frequency characteristics

LPF selection – influence on pulse shape

LPF selection – influence on pulse shape (normalized)

LPF selection – influence on pulse shape (normalized)

- Pulse position modulation (PPM)
- PPM detection by event timer
- Frontend
 - ☑ LPF selection
 - Commercial LPFs
 - LPF design and implementation
 - Experimental validation
- Conclusions

Commercial LPFs

Parameter			F#	Frequency (MHz)	Min.	Тур.	Max.	Unit
Pass Band		Insertion Loss	DC-F1	DC-500	_	1.1	1.6	dB
	and	Freq. Cut-Off	F2	750	-	3.0	_	dB
		VSWR	DG-F1	DG-500	_	1.15	_	:1
Stop Band		Insertion Loss	F3	900	20	33	_	dB
	and		F4-F5	1100-20000	_	40	_	dB
		VSWR	F3-F5	900-20000	_	10	_	:1

Electrical Specifications⁽¹⁾ at 25°C

Typical Frequency Response

Commercial LPFS - VLFX-500+, LTCC LPF, DC - 500 MHz

- Pulse position modulation (PPM)
- PPM detection by event timer
- Frontend
 - ☑ LPF selection
 - ☑ Commercial LPFs
 - \Box LPF design and implementation
 - Experimental validation
- Conclusions

LPF design and implementation - microstrip - HFSS

LPF design and implementation – microstrip – real

LPF design and implementation - microstrip -

measured spectral characteristics

- Pulse position modulation (PPM)
- PPM detection by event timer
- Frontend
 - ☑ LPF selection
 - ☑ Commercial LPFs
 - \square LPF design and implementation
 - Experimental validation
- Conclusions

Experimental validation - microstrip - alone

Experimental validation – microstrip – in cascade with VLFX 1300+

Experimental validation – microstrip – in cascade with VLFX 2500+

- Pulse position modulation (PPM)
- PPM detection by event timer
- Frontend
 - ☑ LPF selection
 - ☑ Commercial LPFs
 - \square LPF design and implementation
- Conclusions

Conclusions

- For a 50 ps pulse expansion to 700 ps, low-pass filters (LPFs) of Bessel type, third order, with a cut-off frequency of 500 MHz implemented using microstrip technique could be employed.
- To achieve a smooth and undistorted expanded pulse shape, a cascade connection of filters with two different frequency characteristics can be utilized. This approach would provide a smooth cut-off at the low-frequency range and sufficient suppression at the high-frequency range.
- Given methodology allows to use high precision event-timer which requires relatively long pulses.

Thank You for attention!