

Implementation of Reconfigurable 149Mbps TDC-Based PPM Transceiver

Pauls Eriks Sics, Nikolajs Tihomorskis, Sandis Migla, Jakovs Ratners, Viktors Kurtenoks, **Arturs Aboltins**

1

Objective

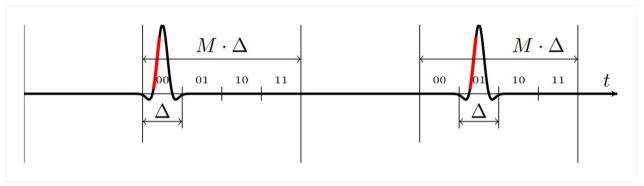
Designing and Implementing a high-bitrate pulse position modulation (PPM) transceiver for long range / low energy applications. Use off-the shelf event-timer for demodulator.

Key Points:

- •Target bitrate of over 149 Mbps.
- •DTC/TDC-based software-defined radio approach for flexibility.

Technology Overview

- Modulation Technique: Pulse position modulation (PPM).
- Components:
 - Modulator implemented with software-controlled digital-to-time converter(DTC).
 - Demodulator based on high-precision time-to-digital converter (TDC).


Advantages:

- Extraordinary energy efficiency
- Capable of handling signals with up to 100 GHz bandwidth.
- Software flexibility allows switching between different PPM formats.

Why PPM?

Meets the need for energy-efficient, high-speed communication in **deep space** (millions of km) applications and **IoT** (harvested power)

Structure of example PPM signal encoding **00** and **01**, where:

- -D duration of one position
- -M number of positions

Pulse width (which affects average power) does not carry information and can be minimized.

TDC & DTC

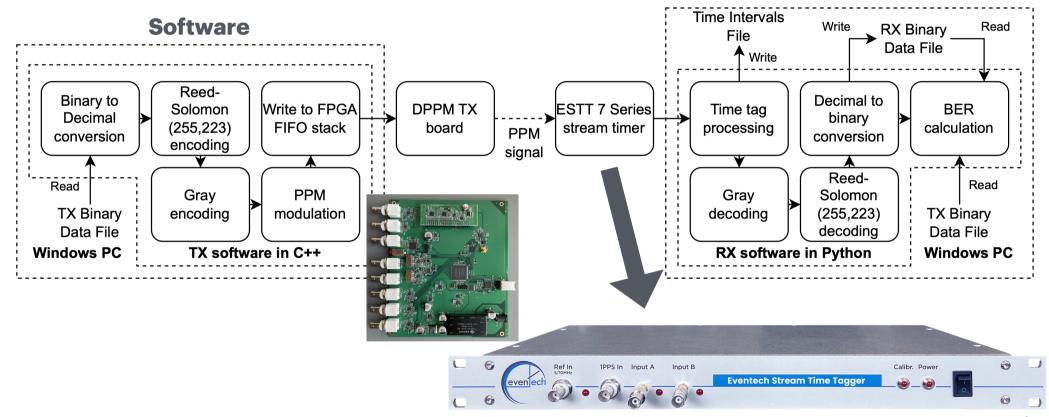
Time-to-digital converter instead of analog-to-digital converter Digital-to-time converter instead of digital-to-analog converter

- Allows to deal with **huge numbers of positions** (our prototype supports up to 65535)
- Allows to use fully **asynchronous** processing pipeline, significantly saving power even during the data transfer.

Parameters of the modulator.

Parameter	Value
DTC granularity (minimum step)	10 ps
Maximum precision delay	10450 ps
Bits for precision delay	10
Maximal coarse delay	$655.35 \ \mu s$
Bits for coarse delay	16
Maximal number of pulses per second	10^{6}
Minimal pulse repetition interval	10 ns

Parameters of the ESTT 7 Series event timer.


Parameter	Value	
Single-shot RMS resolution	2.2 - 2.3 ps (max 2.5 ps)	
Dead time	40 ns	
Impulse duration	$\geq 125 \text{ ps}$	
Measurement rate	20 MEPS	
Single input time tag drift	$< 2 \text{ ps/C}^{\circ}$	
Input to input offset drift	$< 0.05 \text{ ps/C}^{\circ}$	

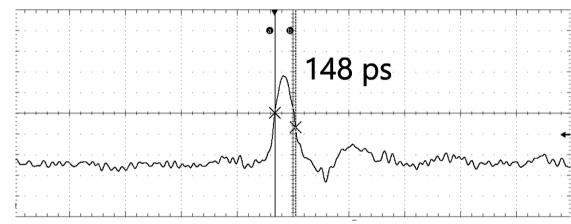
Design and Implementation

Transceiver block diagram

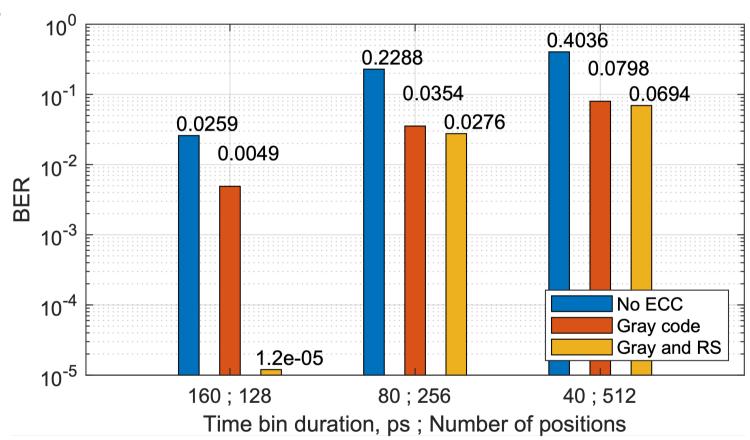
Software

6

Laboratory Testing and Results


Setup

Laboratory Testing and Results EUCINC 66 Summit Antwerp, Belgium • 3-6 June 2024


Parameter	Description	Value
Modulation scheme	Modulation scheme	DPPM [9]
Bit count	Number of bits sent	10^{6}
$t_{ m g}$	Guard time, ns	50
au	Pulse duration, ps	150
x	Bit pattern	Pseudo-random

Test configuration

Laboratory Testing and Results EUCIC 66 Summit Antwerp, Belgium • 3-6 June 2024

Test results

Arturs Aboltins.

Riga Technical University & Eventech LTD.

EuCNC & 6G Summit 2024

Demonstration

Conclusions and Future Work

Achievements:

- Prototyped a versatile, high-speed PPM transceiver.
- Demonstrated the feasibility of using software-controlled TDC and DTC technologies in energy-efficient high bitrate data transmission.

Next Steps:

- Address software limitations to fully utilize hardware capabilities.
- Use of TDC with lower dead time
- Simultaneous satellite laser ranging (SLR) and communication

Acknowledgements

- Funding: Supported by the Latvian Council of Science grant No. lzp-2021/1-0475, "Picosecond-resolution pulse position modulation for beyond-the-limits energy efficiency of communications", Riga Technical University.
- Collaborations (hardware): Eventech Ltd
- Contact Information: http://picoppm.org